首页 | 本学科首页   官方微博 | 高级检索  
     

划痕图像的连分式插值修补算法
引用本文:何蕾,夏康雄,檀结庆,胡敏. 划痕图像的连分式插值修补算法[J]. 中国图象图形学报, 2017, 22(3): 376-384
作者姓名:何蕾  夏康雄  檀结庆  胡敏
作者单位:合肥工业大学数学学院, 合肥 230009,北京理工大学, 北京 100081,合肥工业大学数学学院, 合肥 230009,合肥工业大学计算机与信息学院, 合肥 230009
基金项目:国家自然科学基金项目(61070227,61472466,61502141,61672202);安徽省自然科学基金项目(1508085QF128);中央高校基本科研业务费专项基金项目(JZ2015HGXJ0175,JZ2016HGBZ1005)
摘    要:目的 图像修复在图像处理中起着举足轻重的地位,针对目前大部分图像修补算法在修复划痕时存在纹理修复不够突出的缺陷,提出了两种基于连分式插值的修补算法,可以较好保持图像纹理的特性。方法 该算法基于连分式插值理论,采用图像破损点周围像素信息来插值出破损点的像素值。根据插值函数和插值窗口的不同,提出了两种插值方法,即Thiele型修补算法与Newton-Thiele型修补算法,解决不同纹理类型图像的划痕修补问题,并对插值过程中出现的奇异点问题和平移问题提出了行之有效的解决办法。结果 对大量的划痕图像进行实验测试,并通过主观评价和客观评价进行评估。客观评价包括峰值信噪比(PSNR)和运行时间的比较。相对于目前流行的一些修补方法来说,本文算法有更好的视觉效果,更高的峰值信噪比和更短的运行时间,峰值信噪比为44.79 dB,运行时间为0.53 s。结论 Thiele型修补算法更加擅长处理纹理垂直于划痕的图像,而Newton-Thiele型修补算法适用于复杂纹理的图像。

关 键 词:图像修补  划痕  连分式  插值  Newton-Thiele  Thiele
收稿时间:2016-07-18
修稿时间:2016-10-22

Inpainting algorithm by continued fraction interpolation for scratching images
He Lei,Xia Kangxiong,Tan Jieqing and Hu Min. Inpainting algorithm by continued fraction interpolation for scratching images[J]. Journal of Image and Graphics, 2017, 22(3): 376-384
Authors:He Lei  Xia Kangxiong  Tan Jieqing  Hu Min
Affiliation:School of Mathematics, Hefei University of Technology, Hefei 230009, China,Beijing Institute of Technology, Beijing 100081, China,School of Mathematics, Hefei University of Technology, Hefei 230009, China and School o f Computer and Information, Hefei University of Technology, Hefei 230009, China
Abstract:Objective Image inpainting is crucial for image processing. However, image inpainting methods produce restored images with unsatisfactory textures. Therefore, to effectively maintain image textures, we propose two image inpainting algorithms based on continued fraction interpolation.Methods The proposed algorithms are based on continued fraction interpolation. The intensity of a damaged point is interpolated from the information of the surrounding pixel points. The two proposed interpolation methods are based on different interpolation functions and interpolation windows to repair different types of scratching texture images:the inpainting algorithm based, which is based on Thiele interpolation, and the inpainting algorithm, which is based on Newton-Thiele interpolation. Moreover, we propose the solutions to singular point and translation problems in interpolation.Results To demonstrate the superiority of the proposed algorithms, several experiments were conducted with scratching images. Subjective and objective evaluations were employed. The objective evaluation compared the peak signal-to-noise ratio (PSNR) and running time among algorithms. The experimental results showed that the proposed algorithms exhibited better visual effect, higher PSNR, and shorter running time than those of current popular inpainting algorithms. The PSNR of the proposed algorithm was 44.79 dB, and its running time was 0.53 s.Conclusion The proposed inpainting algorithm, which is based on Thiele interpolation, is more suitable for scratching images with perpendicular textures. By contrast, the inpainting algorithm, which is based on Newton-Thiele interpolation, is more appropriate for complex texture images.
Keywords:image inpainting  scratch  continued fractions  interpolation  Newton-Thiele  Thiele
点击此处可从《中国图象图形学报》浏览原始摘要信息
点击此处可从《中国图象图形学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号