首页 | 本学科首页   官方微博 | 高级检索  
     

基于RPROP神经网络算法的主变DGA故障诊断模型
引用本文:章剑光,周浩,盛晔. 基于RPROP神经网络算法的主变DGA故障诊断模型[J]. 电力系统自动化, 2004, 28(14): 63-66
作者姓名:章剑光  周浩  盛晔
作者单位:浙江大学电气工程学院,浙江省,杭州市,310027;绍兴电力局,浙江省,绍兴市,312000;浙江大学电气工程学院,浙江省,杭州市,310027;绍兴电力局,浙江省,绍兴市,312000
摘    要:故障诊断模型是开展输变电设备状态检修的核心环节之一,文中采用弹性反馈(RPROP)神经网络算法建立主变压器油中溶解气体的神经网络故障诊断模型,通过与带动量因子的标准反向传播(BP)算法、Bold Driver算法、SuperSAB算法相比较,表明了RPROP算法在故障模式识别中具有更好的学习效率与泛化能力,故障诊断的准确度高于传统分析方法,在变电设备状态诊断中具有良好的应用前景.

关 键 词:变电设备  主变压器  状态检修  故障诊断  神经网络  弹性反馈(RPROP)  油中溶解气体分析(DGA)
收稿时间:1900-01-01
修稿时间:1900-01-01

APPLICATION OF RPROP ANN BASED FAULT DIAGNOSIS MODEL FOR TRANSFORMER DISSOLVED GAS-IN-OIL ANALYSIS
Zhang Jianguang,Zhou Hao,Sheng Ye. APPLICATION OF RPROP ANN BASED FAULT DIAGNOSIS MODEL FOR TRANSFORMER DISSOLVED GAS-IN-OIL ANALYSIS[J]. Automation of Electric Power Systems, 2004, 28(14): 63-66
Authors:Zhang Jianguang  Zhou Hao  Sheng Ye
Abstract:Fault diagnosis model is one of the core algorithms in transmission and transformation equipment. An artificial neural network (ANN) programming based on RPROP (resilient propagation ) algorithm is presented for the dissolved gas-in-oil analysis (DGA) methodologies. The comparative analysis shows RPROP algorithm provides both higher learning efficiency and stronger generalization capacity versus standard BP, Bold Driver and SuperSAB algorithms once used in DGA. When RPROP is applied to the transformer DGA, the fault diagnosis accuracy is evidently enhanced compared to other conventional methods. Therefore, it shows a promising future in the diagnostic field for power transformation equipment.
Keywords:transformation equipment  main transformer  condition based maintenance  fault diagnosis  neural network  resilient propagation (RPROP)  dissolved gas-in-oil analysis (DGA)
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电力系统自动化》浏览原始摘要信息
点击此处可从《电力系统自动化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号