首页 | 本学科首页   官方微博 | 高级检索  
     


Enhanced Ultrafast Nonlinear Optical Response in Ferrite Core/Shell Nanostructures with Excellent Optical Limiting Performance
Authors:Alberto López‐Ortega  Gaurav Kumar Tiwari  Josep Nogués  Tamio Endo  Reji Philip
Affiliation:1. CIC nanoGUNE, Tolosa Hiribidea 76, Donostia‐San Sebastian, Spain;2. Ultrafast and Nonlinear Optics Lab, Light and Matter Physics Group, Raman Research Institute, Bangalore, India;3. Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, Spain;4. Institució Catalana de Recerca i Estudis Avan?ats (ICREA), Barcelona, Barcelona, Spain;5. Sagamihara Surface Laboratory, Chuo‐ku Sagamihara, Kanagawa, Japan
Abstract:Nonlinear optical nanostructured materials are gaining increased interest as optical limiters for various applications, although many of them suffer from reduced efficiencies at high‐light fluences due to photoinduced deterioration. The nonlinear optical properties of ferrite core/shell nanoparticles showing their robustness for ultrafast optical limiting applications are reported. At 100 fs ultrashort laser pulses the effective two‐photon absorption (2PA) coefficient shows a nonmonotonic dependence on the shell thickness, with a maximum value obtained for thin shells. In view of the local electric field confinement, this indicates that core/shell is an advantageous morphology to improve the nonlinear optical parameters, exhibiting excellent optical limiting performance with effective 2PA coefficients in the range of 10?12 cm W?1 (100 fs excitation), and optical limiting threshold fluences in the range of 1.7 J cm?2. These values are comparable to or better than most of the recently reported optical limiting materials. The quality of the open aperture Z‐scan data recorded from repeat measurements at intensities as high as 35 TW cm?2, indicates their considerably high optical damage thresholds in a toluene dispersion, ensuring their robustness in practical applications. Thus, the high photostability combined with the remarkable nonlinear optical properties makes these nanoparticles excellent candidates for ultrafast optical limiting applications.
Keywords:core/shell nanoparticles  nonlinear absorption  optical limiting  oxide heterostructures
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号