首页 | 本学科首页   官方微博 | 高级检索  
     


Vermeidung der Wasserstoffversprödung vergüteter Stähle bei galvanotechnischen Prozessen durch thermische Legierungsbildung
Authors:Wolfgang Paatsch
Abstract:Avoidance of hydrogen embrittlement of high strength steels during electroplating processes by thermal alloying Low alloyed high strength steels are often electroplated by metal layers protecting against corrosion. For ultra high strength, quenched and tempered steels with yield strengths > 1000 Nmm?2 embrittlement by hydrogen being envolved during the electrochemical pretreatment as well as metal deposition has to be avoided. More over the corrosion protecting layers should form a diffusion barrier for hydrogen which can be formed during corrosion processes under special circumstances. In this paper two problem solutions including thermal alloying processes will be discussed. Plating the steel substrate with a nickel layer subsequently annealed at a temperature above 800°C in an inert gas atmosphere an austenitic iron-nickel-alloy at the boundary is formed, being a high efficient diffusion barrier for hydrogen. Further zinc plating is improving the corrosion resistance avoiding at the same time pitting corrosion problems. Plating the steel substrate with a copper and a following nickel layer on top and annealing it at the temperature of 800°C a highly corrosion resistant copper-nickel-alloy is formed showing excellent barrier behaviour for hydrogen diffusion. In both cases hydrogen being formed during the plating process itself and penetrating into the base metal does not lead to embrittlement as it is effusing during the annealing procedure.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号