首页 | 本学科首页   官方微博 | 高级检索  
     


Formation and transition of calcium aluminate and calcium silicate compounds from pre-synthesized mullite in low-calcium system by solid-state reaction
Affiliation:1. Dept. of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India;2. Dept. of Materials and Metallurgical Engineering, Maulana Azad National Institute of Technology Bhopal 462003, India;1. School of Physics, Northeast Normal University, Changchun 130024, China;2. Department of Physics, Georgia Southern University, Statesboro, GA 30460, USA
Abstract:The formation and transition of calcium aluminate and calcium silicate compounds from pre-synthesized mullite in low-calcium system were systematically studied by solid-state reaction at 1350–1500 °C using XRF, XRD, FTIR, SEM and PSD methods. Ca3Al2O6, Ca12Al14O33, CaAl2O4, Ca2SiO4 and Ca2Al2SiO7 can form via direct reaction of mullite with CaO at the beginning of the reactions, then Ca12Al14O33 and Ca3Al2O6 react with mullite to form CaAl2O4 and Ca2SiO4, and finally Ca2Al2SiO7 reacts with CaO to generate Ca2SiO4 and calcium aluminate compounds as the sintering process proceeds. Elevating the sintering temperature is in favor of the formation of Ca12Al14O33, Ca3Al2O6 and Ca2Al2SiO7 at the initial reaction stage, but Ca2Al2SiO7 cannot totally transform to calcium silicate and calcium aluminate compounds in the low-calcium system, which deteriorates the pulverization performance of the final products. Increasing the calcium dosage accelerates the transformation of Ca2Al2SiO7 to Ca12Al14O33, CaAl2O4 and Ca2SiO4, which enhances the pulverization performance. If the CaO/Al2O3 molar ratio exceeds 1.4, Ca3Al2O6 will generate by the reactions of pre-formed CaAl2O4 and Ca12Al14O33 with excessive CaO.
Keywords:Mullite  Calcium aluminate  Calcium silicate  Phase transition  Sintering  Pulverization
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号