首页 | 本学科首页   官方微博 | 高级检索  
     


Marangoni convective nanofluid flow over an electromagnetic actuator in the presence of first‐order chemical reaction
Authors:Ghulam Rasool  Anum Shafiq  Iskander Tlili
Abstract:The present study aims to investigate Marangoni‐forced convective nanofluid flow over an electromagnetic actuator (Riga plate). A first‐order homogeneous chemical reaction is considered. The thermocapillary and solutocapillary Marangoni effect developed by the surface tension is considered as a driving force for the nanofluid. In addition, Grinberg‐term is accounted to involve the impact of Lorentz force impinged by the actuator in the model. A set of nonlinear ordinary differential equations is obtained via suitable transformations for a nonsimilar analysis. Series solutions are achieved through homotopy to discuss the behavior of the velocity field, thermal distribution, and concentration of the nanoparticles graphically. The variation in Nusselt and Sherwood numbers is discussed. The outcomes declared that the flow parallel to the surface of the plate is assisted by the Lorentz forces generated by electromagnetic bars of the actuator resulting in an enhancement in the fluid motion. Furthermore, the stronger Marangoni effect resulted in the declining trend of the temperature profile. The concentration of nanoparticles near the surface reduced intensive chemical reaction inside the nanofluid.
Keywords:Chemical reaction  Marangoni convection  nanofluid  nanoparticles  Riga plate
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号