首页 | 本学科首页   官方微博 | 高级检索  
     


Development of an axisymmetric population balance model for spray drying and validation against experimental data and CFD simulations
Authors:Mark Pinto  Ian Kemp  Sean Bermingham  Thoralf Hartwig  Ariane Bisten
Affiliation:1. Process Systems Enterprise, 6th Floor East, 26-28 Hammersmith Grove, London W6 7HA, UK;2. GlaxoSmithKline plc, R&D, Gunnels Wood Road, Stevenage SG1 2NY, UK
Abstract:An incremental model for spray drying, including a full droplet size distribution, has been implemented in a flowsheeting package incorporating tracking of distributed particle properties. Results were compared with expected trends based on standard theory and with results from a laboratory-scale spray dryer with a two-fluid nozzle for atomization. Predicted trends were as expected, with larger droplets giving substantially longer drying times and higher final moisture content. Predicted final moisture content was lower than measured values, as the very short residence times for fine particles were inadequately represented by first-order falling-rate drying kinetics. Dryer gas flow patterns were simulated by computational fluid dynamics. Calculated droplet residence times were much lower than for a plug-flow or fully mixed gas flow, because a high-velocity gas flow zone from the two-fluid atomizer persists down a substantial part of the dryer.
Keywords:Two-fluid nozzle   Droplet size distribution   Drying kinetics   Crust formation   Computational fluid dynamics   Particle residence time
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号