基于深度网络训练的铝热轧轧制力预报 |
| |
摘 要: | 在铝热轧过程中,轧制力预报精度直接影响着成品的产量和质量。为了提高铝热连轧轧制力预报精度,提出一种基于深度学习方法的多层感知器(Multi-layerPerceptron,MLP)轧制力预报模型。模型利用MLP的函数逼近能力来回归轧制力。模型以小批量训练为基础,利用Batch Normalization方法稳定网络前向传播的输出分布,并使用Adam随机优化算法来完善梯度更新,以解决MLP模型难以训练的问题。仿真结果表明:模型使网络预测与实测数据的相对误差降低到3%以内,实现了轧制力的高精度预测。
|
本文献已被 CNKI 等数据库收录! |
|