首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical prediction of performance of a low-temperature-differential gamma-type Stirling engine
Authors:Chin-Hsiang Cheng  Quynh-Trang Le  Jhen-Syuan Huang
Affiliation:1. Institute of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwanchcheng@mail.ncku.edu.tw;3. Institute of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan
Abstract:Abstract

In this study, a numerical simulation model is used to analyze thermodynamic performance of a low temperature-differential gamma-type Stirling engine by adjusting some values of the operating and geometrical parameters around a designated baseline case. The influences of these operating and geometrical parameters on engine performance such as working fluid materials, the stroke of piston and displacer, charged pressure, the heating temperature, and so on, are concerned. A numerical simulation model is established based on turbulent flow assumption and the realizable k – ε model is employed to solve the flow and thermal fields in the engine. In regard to flow in regenerator, Darcy–Forchheimer model was used to depict dynamic behavior of working fluid. Besides, thermal equilibrium model was used for solving the energy equation. Finally, working fluid in the engine undergoes a wide range of pressure and temperature so the effects of temperature and pressure on the viscosity and thermal conductivity of the working fluid are required to include. Thermal conductivity of porous medium matrix is affected by wide range of temperature as well.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号