首页 | 本学科首页   官方微博 | 高级检索  
     


PRESSURE EFFECTS ON NATURAL CONVECTION FOR NON-BOUSSINESQ FLUID IN A RECTANGULAR ENCLOSURE
Authors:Kuo-Shu Hung  Chin-Hsiang Cheng
Affiliation:1. School of Manufacturing Engineering, Seoul National University of Technology , Seoul, Republic of Korea;2. Department of Mechanical and Aerospace Engineering , Seoul, Republic of Korea
Abstract:Numerical predictions of pressure effects on natural convection for a non-Boussinesq fluid in the rectangular enclosures are presented. A solution method based on a compressible flow model is employed to simultaneously determine the absolute pressure, density, temperature, and velocity distributions in the enclosures. Discretization equations are derived from the integral mass, momentum, and energy equations on a staggered grid. The fluid pressure in the enclosure is varied from 20 to 300 kPa such that the flow behavior in a vacuum or pressurized system can be observed. Physical situations investigated also include cases in a wide range of wall temperature difference associated with respective length scales, corresponding to an equivalent modified Rayleigh number ranging from 10 4 to 10 6 . The validity of the incompressible flow model coupled with the Boussinesq approximation for the fluid density, which is commonly used in the existing studies of the buoyant flows, is discussed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号