首页 | 本学科首页   官方微博 | 高级检索  
     


The Effect of Yttrium on Oxygen Grain-Boundary Transport in Polycrystalline Alumina Measured Using Ni Marker Particles
Authors:Huikai Cheng  Shen J Dillon  Hugo S Caram  Jeffrey M Rickman  Helen M Chan  Martin P Harmer
Affiliation:Department of Chemical Engineering, Lehigh University, Bethlehem, Pennsylvania 18015;
Center for Advanced Materials and Nanotechnology, Lehigh University, Bethlehem, Pennsylvania 18015;
Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
Abstract:The grain-boundary transport of oxygen in polycrystalline α-Al2O3 (undoped and 500 ppm Y3+-doped) was studied in the temperature regime of 1100°–1500°C by monitoring the oxidation of a fine, uniform dispersion of Ni marker particles (0.5 vol%). The annealing treatments were carried out in a high-purity O2 atmosphere (>99.5%). The Ni particles, which are visibly oxidized to nickel aluminate spinel, were used to determine the depth of oxygen penetration. The thickness of the reaction zone was measured as a function of heat-treatment time and temperature, and a comparison of the oxidation rate constants and activation energies for undoped and Y3+-doped alumina was made. The results indicate that the presence of Y3+ slows oxygen grain-boundary transport in alumina by a variable factor of from 15 to 3 in the temperature regime of 1100°–1500°C. The values of the activation energy for undoped and Y3+-doped alumina were determined to be 430±40 and 497±8 kJ/mol, respectively.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号