首页 | 本学科首页   官方微博 | 高级检索  
     

基于KSLPP与RWKNN的旋转机械故障诊断
引用本文:王雪冬 赵荣珍 邓林峰. 基于KSLPP与RWKNN的旋转机械故障诊断[J]. 振动与冲击, 2016, 35(8): 219-223
作者姓名:王雪冬 赵荣珍 邓林峰
作者单位:兰州理工大学 机电工程学院,兰州 730050
摘    要:针对旋转机械高维故障特征集识别精度低的问题,提出基于核监督局部保留投影(Kernel Supervised Locality Preserving Projection, KSLPP)与ReliefF特征加权的K近邻(ReliefF Weighted K-Nearest Neighbor, RWKNN)分类器相结合的维数约简故障诊断方法。该方法首先应用KSLPP提取故障特征集中的非线性信息,同时在降维投影过程中充分利用类别信息,使降维后最小化类内散度,最大化类间分离度;随后,将降维后得到的低维敏感特征集输入RWKNN进行模式识别,RWKNN能够突出不同特征对分类的贡献率,强化敏感特征,弱化不相关特征,提升了分类精度和鲁棒性。最后,通过典型转子实验台的故障特征集验证了该方法的有效性。

关 键 词:故障诊断  核监督局部保留投影  ReliefF特征选择  加权K近邻分类器  

Rotating machinery fault diagnosis based on KSLPP and RWKNN
Wang Xuedong Zhao Rongzhen Deng Linfeng. Rotating machinery fault diagnosis based on KSLPP and RWKNN[J]. Journal of Vibration and Shock, 2016, 35(8): 219-223
Authors:Wang Xuedong Zhao Rongzhen Deng Linfeng
Affiliation:School of Mechanical and Electronical Engineering of Lanzhou Univ. of Tech, Lanzhou 730050
Abstract:Aiming at the questions high dimension and low precision of the recognition for rotating machinery fault diagnosis, a intelligent fault diagnosis methods based on kernel supervised locality preserving projection and K nearest neighbor weighted by feature selection ReliefF algorithm(RWKNN) was proposed. KSLPP can effectively extract nonlinear information in original feature data set, at the same time make full use of class information in dimension reduction projection, make the sample minimize the dispersion within class, maximum the separation between classes. Then ,the sensitive low dimension feature data set fed into K nearest neighbor weighted by feature selection ReliefF algorithm to recognize the fault type. RWKNN can highlight the contribution rate of different features for classification, strengthen the sensitive characteristics, weaken the irrelevant features, improve the classification accuracy and robustness. At last, the validity of the proposed method was verified by the typical fault vibration signal of rotor.
Keywords: fault diagnosis  kernel supervised locality preserving projection(KSLPP)  feature selection ReliefF  ')"   href="  #"  >weighted K-nearest neighbor
本文献已被 CNKI 等数据库收录!
点击此处可从《振动与冲击》浏览原始摘要信息
点击此处可从《振动与冲击》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号