首页 | 本学科首页   官方微博 | 高级检索  
     


The thermomechanical environment and the mechanical properties of injection moldings
Authors:  lio C. Viana,Noelle Billon,Ant  nio M. Cunha
Affiliation:Júlio C. Viana,Noelle Billon,António M. Cunha
Abstract:Axisymmetric specimens were injection molded in a propylene copolymer with systematic variations of the melt and mold temperatures and the injection flow rate, in a total of 15 different processing conditions. From computer simulations of the mold filling stage using commercially available software packages, two thermomechanical indices were calculated. They aim at evaluating the level of orientation of the skin and the degree of crystallinity of the core layers. Assuming that these morphological features determine the mechanical response of the moldings, the thermomechanical indices were weighted by the relative thickness of the skin and core layers. The tensile behavior of the moldings was assessed at two velocities of 3.3 × 10?5 (2 mm/min) and 3 m/s. The mechanical properties studied were the initial modulus, the yield stress and the strain at break. The relationships between the weighted thermomechanical indices and these mechanical properties were analyzed from 3D response surfaces obtained by polynomial fittings. Globally, a marked effect of the strain rate on the mechanical response along with a distinct sensitivity on the weighted thermomechanical indices was found. At high strain rates the microstructural differences were enhanced. The dependence of the yield stress on the thermomechanical indices was not significantly affected by the strain‐rate. However, the strain‐rate dependence of the other mechanical properties was strongly influenced by the initial microstructural state. Furthermore, the maximization of different mechanical properties could not be made simultaneously due to their distinct microstructural dependences. The concept of the thermomechanical indices is evidenced as a simple, valid and valuable tool to establish straightforward relationships between the processing and the mechanical behavior. Polym. Eng. Sci. 44:1522–1533, 2004. © 2004 Society of Plastics Engineers.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号