首页 | 本学科首页   官方微博 | 高级检索  
     


Formation of a soluble hyperbranched polymer via initiator–fragment incorporation radical copolymerization of divinyl adipate and isobutyl vinyl ether
Authors:Tsuneyuki Sato  Yukiko Arima  Makiko Seno  Tomohiro Hirano
Abstract:The copolymerization of divinyl adipate (DVA) with isobutyl vinyl ether (IBVE) was conducted at 70 and 80 °C in benzene using azobisisobutyronitrile (AIBN), at a concentration as high as 0.50 mol l?1 as the initiator, where the concentrations of DVA and IBVE were 0.40 and 0.60 mol l?1, respectively. The copolymerization proceeded homogeneously, without any gelation, to yield soluble copolymers in spite of the high molar ratio of DVA as an excellent cross‐linker for IBVE. The copolymer yield increased with time, and the number‐average molecular weight (Mn = 0.9–2.4 × 104 g mol?1) from gel permeation chromatography (GPC) and molecular weight distribution (Mw/Mn = 1.5–7.6) of the resulting copolymer increased with copolymer yield. The cyanopropyl group, as a fragment of AIBN, was incorporated as a main constituent in the copolymer, the fraction of which increased from ca 10 to ca 20 % with copolymer yield, hence indicating that the copolymerization is an initiator–fragment incorporation radical polymerization. The copolymers also contained IBVE units (10–30 %) and DVA units with intact double bond (8–36 %) and without double bond (45 %). The intrinsic viscosity of the copolymer was very low (0.1 dl g?1) at 30 °C in tetrahydrofuran. The results from GPC–multi‐angle laser light scattering (MALLS), transmission electron microscopy (TEM) and MALLS revealed that individual copolymer molecules were formed as hyperbranched nanoparticles. Copyright © 2004 Society of Chemical Industry
Keywords:initiator‐fragment incorporation radical polymerization  hyperbranched polymer  nanoparticle  divinyl monomer  viscosity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号