首页 | 本学科首页   官方微博 | 高级检索  
     


Machine intelligence-driven classification of cancer patients-derived extracellular vesicles using fluorescence correlation spectroscopy: results from a pilot study
Authors:Uthamacumaran  Abicumaran  Abdouh  Mohamed  Sengupta  Kinshuk  Gao  Zu-hua  Forte   Stefano  Tsering   Thupten  Burnier   Julia V.  Arena  Goffredo
Affiliation:1.Department of Physics (Alumni), Concordia University, Montreal, QC, Canada
;2.McGill Genome Center (Majewski Lab), 740 Dr Penfield Ave, Montreal, QC, H3A 0G1, Canada
;3.Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
;4.The Henry C. Witelson Ocular Pathology Laboratory, McGill University, Montreal, QC, Canada
;5.Microsoft Research and Development, New Delhi, India
;6.Department of Pathology and Laboratory Medicine, University of British Columbia, G105-2211 Wesbrook Mall, Vancouver, BC, Canada
;7.IOM Ricera, Via Penninazzo 11, 95029, Viagrande, Italy
;8.Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
;9.Experimental Pathology Unit, Department of Pathology, McGill University, Montreal, QC, Canada
;10.Istituto Mediterraneo Di Oncologia, Viagrande, Italy
;11.Department of Surgery, McGill University, Montreal, QC, Canada
;12.Fondazione Gemelli-Giglio, Contrada Pollastra, Cefalù, Italy
;
Abstract:Neural Computing and Applications - Patient-derived extracellular vesicles (EVs) that contains a complex biological cargo is a valuable source of liquid-biopsy diagnostics to aid in early...
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号