首页 | 本学科首页   官方微博 | 高级检索  
     


Strengthening caused by power law creep deformation of dispersed particles in an elastic matrix
Authors:YS Lee  TJ Batt  SC Hwang
Affiliation:?Mechanical Engineering Department, YeungNam University, GyungSan, Gyung Buk, 712-749, Korea;?Westinghouse Electric Corp., P.O. Box 2728, Pittsburgh, PA 15230-2728, USA;Mechanical Engineering Department, Chung-Buk National University, Cheong Ju, Chung Buk, Chung Buk, 360-763, Korea
Abstract:The interaction energy is approximated between an edge dislocation and a particle deformable by power law creep in an elastic matrix. The stress required to overcome the interaction energy barrier is found to be greater than the Orowan stress, and the dislocation bulges to escape the particle. If the ratio of the shear modulus of the matrix to the viscosity of the particle (μtm/σ0) is large, the stress required to climb over the particle is larger than the Orowan stress and the dilocation bulges before it climbs. It is concluded that even if the particle is soft enough to exhibit creep, the strengthening of alloys can be achieved by an Orowan mechanism. The critical resolved shear stress (CRSS) of Cu-B2O3, obtained experimentally by Onaka et al. 11], agrees closely with that obtained in our analysis. This supports our analysis that the strength of Cu-B2O3 alloy at high temperature may be accounted for by the Orowan mechanism and the attraction between a dislocation and viscous particles. The energy and the force to overcome the energy barrier increases significantly with decrease of m, the strain rate exponent associated with the power law creep particle. It is found through analysis that for m < 1.0 and for certain values of μtm/σ0 > 1, the particle repulses the dislocation, while for m = 1.0 and for all values of μtm/σ0 > 1, the particle attracts the dislocation, which is the expected interaction between an elastic particle and a dislocation in an elastic matrix.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号