首页 | 本学科首页   官方微博 | 高级检索  
     


An inverse solution for reconstruction of the heat transfer coefficient from the knowledge of two temperature values in a solid substrate
Authors:S Moaveni  J Kim
Affiliation:1. Department of Materials Science and Engineering, Kyushu University, Fukuoka, Japan;2. Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
Abstract:Reconstruction of the heat transfer coefficient from the knowledge of temperature distribution is an inverse problem. The main focus of this study was to develop an inverse model that could be used to determine the heat transfer coefficient associated with a fluid in contact with a solid surface from the knowledge of two measured temperature values (T1 and TM) in the solid substrate. The temperature distribution for the inverse problem was numerically generated, for a situation with a known heat transfer coefficient, using an implicit finite-differencing scheme. The solution domain was first discretized in to finite number of small regions and nodes. Conservation of energy was then applied to each of the control volume about the nodal regions. This approach resulted in a set of linear equations that was solved simultaneously. Two nodal temperatures in the substrate, from the direct solution, were then used in the inverse problem to reconstruct the heat transfer coefficient. To solve the inverse problem, the solution domain was divided into two distinct regions (Region I and Region II). Region I contained the solution domain between the two known temperatures (T1 and TM), and Region II included the region between TM and the surface with the convective boundary condition. Again, a finite-differencing scheme was employed to generate a set of linear equations in each region. First, the set of linear equations in Region I was solved simultaneously and the results were then used to reconstruct the nodal temperatures in Region II. The convective surface temperature was then utilized to determine the heat transfer coefficient. A series of numerical experiments were conducted to test the validity of the inverse model. Comparison of the inverse solutions with the direct solutions confirms that the heat transfer coefficient can be reconstructed, with good accuracy, from the knowledge of two temperature points in the solid substrate.
Keywords:Inverse problem  heat transfer  heat transfer coefficient
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号