首页 | 本学科首页   官方微博 | 高级检索  
     

基于Online LS-SVM的钢铁件淬火硬度在线检测
引用本文:贾健明,颜鹏. 基于Online LS-SVM的钢铁件淬火硬度在线检测[J]. 电子测量技术, 2009, 32(3): 68-71
作者姓名:贾健明  颜鹏
作者单位:常州信息职业技术学院机电工程系,常州,213164;常州信息职业技术学院机电工程系,常州,213164
基金项目:江苏省高校自然科学研究指导性计划研究项目,江苏省高校高新技术产业发展指导性计划项目,江苏省常州市工业科技攻关计划 
摘    要:为了实现钢铁件淬火硬度的在线电磁无损检测,提出了在线最小二乘支持向量机(online least square support vector machine)的建模方法。Online LS-SVM是以增量学习训练SVM,以减量学习减少样本数,实现小样本估计的训练方法。实验结果表明,Online LS-SVM不仅能实现钢铁件淬火硬度的在线电磁无损检测,而且具有学习速度快,泛化性能好,对样本依赖程度低的优点。

关 键 词:最小二乘支持向量机  人工神经网络  在线检测  电磁无损检测  硬度

Online ENDT for hardness of iron and steel parts based on online LS-SVM
Jia Jianming,Yan Peng. Online ENDT for hardness of iron and steel parts based on online LS-SVM[J]. Electronic Measurement Technology, 2009, 32(3): 68-71
Authors:Jia Jianming  Yan Peng
Affiliation:Dept.of Mechanical and Electrical Engineering;Changzhou College of Information Technology;Changzhou 213164
Abstract:On the purpose of realizing the online electromagnetic nondestructive testing(ENDT) for hardness of iron and steel parts,a novel method of Online LS-SVM(Online Least Square Support Vector Machine)was proposed.Online LS-SVM means that LS-SVM can be trained in an incremental way,and can be pruned to get sparse approximating in a decremental way.The experiments show that this method not only achieves the online ENDT for hardness of iron and steel parts,but also have many advantages such as high learning speed,...
Keywords:LS-SVM  artificial neural network (ANN)  online detecting  electromagnetic nondestructive testing (ENDT)  hardness
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号