首页 | 本学科首页   官方微博 | 高级检索  
     


Cu2O-based binary and ternary photocatalysts for the degradation of organic dyes under visible light
Affiliation:Ministry of Education Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Physics, Xi''an Jiaotong University, Xi''an, 710049, Shaanxi, China
Abstract:As competitive photocatalysts, Cu2O nanoparticles meet with severe photogenerated carries recombination and insufficient light absorption, leading to the poor photocatalytic performance. Herein, the truncated Cu2O-Au (CA) binary and Cu2O-Au-TiO2 (CAT) ternary octahedra with Au nanoparticles (Au NPs), preferentially supported on the (110) and (100) planes of Cu2O, are synthesized for efficient photocatalytic degradation reactions. The photodegradation rates of MO of CA1 (Cu2O-Au containing 1 wt % Au) and CAT are as high as 95.61% and 96.5% under 60 min of visible light irradiation, respectively. On the one hand, the synergistic function of localized surface plasmon resonance (LSPR) of Au NPs and Schottky barrier accelerate the separation and transfer of photogenerated carriers. On the other hand, a Z-scheme electron transfer system is constructed in CAT to promote the photodegradation performance. According to the finite-difference-time-domain (FDTD) simulation result, there is a strong electric field enhancement at the contact sites between Au, Cu2O and TiO2, which accelerates the electron transfer to a large extent and separates the electron-hole pairs. Therefore, this work may provide an approach for the synthesis and applications of multiple heterostructure catalyst.
Keywords:Au nanoparticles  LSPR  Schottky barrier  Photocatalyst
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号