首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of Y2O3 on the structural,optical and radiation shielding properties of transparent Na-rich borate glass with diluted and fixed Fe2O3
Affiliation:1. Department of Physics, Faculty of Science, Isra University, Amman, Jordan;2. Physics Department, Faculty of Science, Zagazig University, Zagazig, Egypt;3. Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia;4. Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia;5. Basic Sciences Department, Faculty of Engineering, Sinai University, Egypt
Abstract:We study the impact of yttrium oxide (Y2O3) on the optical properties of iron-doped borate glasses. A series of borate glasses, with a diluted and constant amount of Fe2O3, doped with various amounts of Y2O3 (labeled as BNaFeY-glasses) was prepared and studied. The impact of Y2O3 doping on the optical transitions of BNaFeY-glasses was studied by analyzing the optical absorption spectra. The presence of Fe cations, with their Fe3+ state, leads to the appearance of absorption in the ultraviolet region. Furthermore, the optical transmittance spectra proved the transparency of all BNaFeY-glasses. Moreover, the transmittance of the sample with the highest Y2O3 content is about 93 % within the visible range. Because of the diluted Fe content within BNaFeY-glasses, the five absorption bands of Fe are not observed. So, these bands are detected by magnifying the spectra within the visible region. These bands are labeled ?1, ?2, ?3, ?4 and ?5 at wavelengths 454.5, 518.4, 652.5, 707 and 808 nm respectively. These bands were used to calculate the crystal field splitting (10Dq) for all BNaFeY-glasses. The outstanding 10Dq increment with further Y2O3 doping was explained in terms of more interactions between Fe cations and their surroundings. On the other side, the shielding parameters were considered to examine the competence of these transparent glasses against nuclear radiation. We found that the sample doped with the highest amount of Y2O3 has the highest linear attenuation coefficient and the lowest half-value layer (HVL). From the HVL results, we need a thickness of 3.646 cm from the sample with 5 mol% of Y2O3 to get protection from 50% of the photons with energy of 0.662 MeV, and this thickness is increased to 5.137 cm when the energy is 1.333 MeV.
Keywords:Sodium-rich borate glasses  Optical properties
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号