首页 | 本学科首页   官方微博 | 高级检索  
     


Crystallization behavior and mechanical properties of high strength mica-containing glass-ceramics from granite wastes
Affiliation:1. School of Materials Science and Engineering, University of Jinan, Jinan, 250000, China;2. Qingyuan CSG New Energy-Saving Materials Co. Ltd., Qingyuan, 511500, China;3. State Key Laboratory for New Technology of Float Glass, 751 Donghai Dadao, Bengbu, 233000, China;4. Taishan Fiberglass Inc. (CTG), Tai''an, 271000, China
Abstract:The high-strength mica-containing glass-ceramics were prepared from granite wastes by bulk crystallization. The influences of SiO2/Al2O3 molar ratio (S/A = 7.72, 9.62, 12.58, 17.82 and 29.67) on the crystallization behavior, microstructure, mechanical properties and machinability of glass-ceramics were investigated. The results demonstrated that the polymerization degree of the glass network decreased with the S/A ratio increasing, which further caused the decrease in glass transition temperature and crystallization temperatures. The increase in the S/A ratio promoted the precipitation of diopside, hectorite, kalsilite and tainiolite in glass-ceramics when the samples were heated at 750 °C, while inhibiting the precipitation of forsterite. For the glass-ceramics crystallized at 800 and 900 °C, the main crystalline phases transformed from diopside, forsterite, and nepheline to diopside, kalsilite, and tainiolite, with the S/A ratio increasing. As the SiO2 gradually replaced Al2O3, the morphology of crystals changed from lamellar to granular, while the mean size of crystals reduced. The Vickers-Hardness values of glass-ceramics crystallized at 800 and 900 °C ascended with S/A ratio rising, and the values were above 6.30 GPa. The bending strength of most glass-ceramics is stable between 90 and 140 MPa, among which the maximum bending strength is 133.28 ± 14.81 MPa. The fracture toughness of the glass-ceramic crystallized at 800 and 900 °C declined, while that at 700 °C increased with a larger S/A ratio. Glass-ceramics after heat-treated at 900 °C with S/A ratio of 9.62 had the largest fracture toughness of 3.28 ± 0.15 MPa m1/2. In preliminary tests of machinability, glass-ceramic after heat-treated at 900 °C with S/A ratio of 9.62 showed better results.
Keywords:Glass-ceramics  Granite wastes  Crystallization  Machinability
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号