首页 | 本学科首页   官方微博 | 高级检索  
     


Preparation and investigation of pulse co-deposited duplex nanoparticles reinforced Ni-Mo coatings under different electrodeposition parameters
Affiliation:School of Materials Science and Engineering, Chang''an University, Xi''an, 710064, China
Abstract:In this work, Ni–Mo–SiC–TiN nanocomposite coatings were deposited on aluminium alloy by pulse electrodeposition with various electrodeposition parameters. The influences of the pulse frequency and duty cycle on the phase structure, morphology, mechanical and corrosion performance of the coatings were systematically investigated. The results showed that with increasing pulse frequency and decreasing duty cycle, the content of embedded duplex nanoparticles increased, and the grains refined gradually. The nanocomposite coating that was prepared at 20% duty cycle and 1000 Hz pulse frequency exhibited compact, uniform, and fine microstructures with the maximum incorporation of nanoparticles (6.81 wt% TiN and 1.72 wt% SiC). The wear rate and average friction coefficient then declined to 4.812 × 10?4 mm3/N·m and 0.13, respectively, with a maximum microhardness of 519 HV. Simultaneously, the corrosion current density was reduced to 3.11 μA/cm2, and a maximum impedance of 34888 Ω cm2 was exhibited. The uniformly distributed duplex nanoparticles acted as a hindrance, which consequently supported the enhancement of corrosion and wear resistance. By investigating the variation of the pulse diffusion layer with electrical parameters, it was discovered that when the crystallite size is equivalent to or smaller than the diffusion layer thickness, it would be easier to cross the diffusion layer to incorporate in the coating. Additionally, the effects of various duty cycles and pulse frequencies on the nucleation process of the grains were discussed.
Keywords:Ni-Mo nanocomposite Coatings  Duplex particles  Wear and corrosion resistance  Surface modification
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号