首页 | 本学科首页   官方微博 | 高级检索  
     


Tunable design of ZnFe2O4@C@BPC hybrid with rich heterogeneous interfaces as a hydrophobic electromagnetic wave absorber
Affiliation:School of Materials and Chemical Engineering, Xi''an Technological University, Xi''an, 710021, PR China
Abstract:Environmentally friendly microwave absorbers with superior electromagnetic wave absorption, lightweight and hydrophobic ability have received considerable attention in practical applications. However, addressing the above-mentioned characteristics is simultaneously a tremendous challenge. Along these lines, in this work, a lightweight and efficient hybrid material was fabricated by employing simple self-assembly of core-shell ZnFe2O4@C nanospheres embedded within longan shell-derived honeycomb-like porous carbon. The results display that the carbon skeleton not only improves the conduction loss, but also promotes the reflection and scattering of EM wave. In addition, the core-shell ZnFe2O4@C microspheres are conducive to enhancing the ability of interface polarization and magnetic loss, and further improving the synergistic effect between the dielectric loss and magnetic loss. Furthermore, the unique structure of the ZnFe2O4@C@BPC endows it excellent hydrophobicity and avoids water vapor contamination in practical applications. Precisely, at a thickness of 3.4 mm, the minimum reflection loss (RL) is up to ?58.6 dB at 12.9 GHz. Notably, the effective absorption bandwidth (EAB) is as wide as 9.1 GHz (8.9–18.0 GHz), covering almost the entire X and Ku bands. Consequently, this outstanding performance renders the ZnFe2O4@C@BPC composite quite attractive for a broad range of applications in lightweight, hydrophobic microwave absorption materials.
Keywords:Porous carbon  Microwave absorption  Synergistic effect  Hydrophobicity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号