首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of HfO2 framework on steam oxidation behavior of HfO2 doped Si coating at high temperatures
Affiliation:1. School of Materials Science and Engineering, China;2. Research Institute for Frontier Science, China;3. Key Laboratory of High-temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University (BUAA), Beijing, 100191, China
Abstract:HfO2 doped Si is designed as bond coat material in thermal/environmental barrier coatings (TEBCs). In this work, the HfO2-Si composite coatings with different HfO2 contents were prepared by atmospheric plasma spraying (APS). The steam oxidation behavior of the coatings was comparatively studied at 1300 °C and 1400 °C. Volatilization of Si occurred during spraying, leading to the deviation of coating compositions. The sprayed coatings contained different HfO2 structures. During steam oxidation, HfSiO4 phase was formed at the SiO2/HfO2 interface by solid-state reaction between them. The HfSiO4 or HfO2/HfSiO4 mixture particles worked to deflect or pin micro-cracks, thus improving the resistance of the coating to cracking. At 1300 °C, a protective oxide scale was formed on the traditional Si coating or the HfO2-Si coating with isolated HfO2 particles. However, the HfO2-Si coating with inter-connected HfO2 framework revealed poor oxidation-resistance. At 1400 °C, accelerated oxidation degradation, steam corrosion volatilization, interface reaction and sintering occurred. The HfO2 framework structure played a dominating role in determining the steam oxidation resistance of the HfO2-Si coating, and the connected HfO2 framework and TGO network provided a rapid diffusion path for oxidants (H2O, O2? and OH?) and deteriorated the oxidation resistance.
Keywords:Framework  Steam oxidation  Thermal/environmental barrier coatings (TEBCs)  Crack
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号