首页 | 本学科首页   官方微博 | 高级检索  
     


Surface engineered environment-stable red-emitting fluorides for white light emitting diodes
Affiliation:1. Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha, 410081, China;2. Nanchang Institute of Technology, Nanchang, 330099, China
Abstract:Poor water stability is the main problem of commercialized Mn4+-doped fluorides for white light emitting diode (WLED) application. This work proposes a surface engineering strategy to rebuild a Mn4+-free fluoride shell on fluorides to effectively resist the destruction from water molecules. By simple processing using glyoxylic acid (GA) solution, the moisture resistance of the red-emitting fluorides can be significantly improved. The photoluminescence (PL) quantum efficiency (QE) of the surface-engineered K2SiF6:Mn4+ (KSFM-GA) still maintain 98.43% after water immersion for 360 h, in sharp contrary to the untreated one (its PLQE decreases to 59.79%). Additionally, PL intensity of the hydrolyzed KSFM can be recovered to 99.1% through the treatment of the reducing GA solution. By using the high-stability KSFM-GA red phosphor, the as-fabricated high-performance warm-WLED device can still maintain 84.6% in luminous efficacy, higher than that (79.6%) with the untreated KSFM, after 500 h of aging in a high temperature (85 °C) and high humidity (85%) environment.
Keywords:Surface engineering  Water stability  Fluoride  Red phosphor
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号