首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of yttria on thermal transport and vibrational modes in yttria-stabilized hafnia
Affiliation:1. Department of Applied Physics, School of Science, Chang''an University, Xi''an, 710064, China;2. MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi''an Jiaotong University, Xi''an, 710049, China;3. State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
Abstract:Low thermal conductivity plays an essential role in application relevant to thermal energy conversion and management. In this paper, we utilize molecular dynamics to investigate the thermal transport and lattice variation modes in yttria-stabilized hafnia, which only contains binary oxides of Y2O3 and HfO2. It is found that the thermal conductivity κ of yttria-stabilized hafnia decreases significantly with the increase of doping ratio of Y2O3, and then reaches a limiting value (~2.1 W m?1K?1), because of the strong phonon scattering of oxygen vacancies. Importantly, a glass-like thermal conductivity κ is achieved in yttria-stabilized hafnia samples when the content of Y2O3 exceeds 15 mol%. By decomposing the phonon vibrational modes, we find that most of the heat is transported by diffusive modes. As a result, the κ exhibits a glass-like feature in yttria-stabilized hafnia samples with high content of Y2O3. Notably, the κ of yttria-stabilized hafnia is much lower than those of classical functional ceramics materials. The insight into the κ in yttria-stabilized hafnia system is beneficial for understanding and reducing the κ of materials through defect engineering. Despite its simple composition, yttria-stabilized hafnia with different doping ratios demonstrates unexpected high scattering rate of phonon vibration density states, which is confirmed by the diffused wavevector-frequency dispersion. Eigenvector periodicity and phonon participation ratio of phonon have been visualized to capture the distribution of phonon modes in yttria-stabilized hafnia with various dopant. This work investigates into the details of phonon vibrational modes in yttria-stabilized hafnia, which would be valuable for conducting experiments to acquire low thermal conductivity materials in laboratory.
Keywords:Thermal transport  Yttria-stabilized hafnia  Phonon modes  Glass-like thermal conductivity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号