首页 | 本学科首页   官方微博 | 高级检索  
     


A novel composite protective coating with UV and corrosion resistance: Load floating and self-cleaning performance
Affiliation:Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
Abstract:The research in functional materials has been the focus in studying industrial applications, particularly in the field of superhydrophobic functional bionic material. Although many studies of superhydrophobic surfaces have been published at this stage, the performance remain unsatisfactory, especially in a variety of harsh environments in practical applications, such as extremely cold weather, acidic or alkaline environment, prolonged exposure to light, high temperature, or oily wastewater, etc. The mechanical strength and corrosion resistance of coatings in such environments are all mighty challenges. In this study, we propose a fluoro silane-modified zinc oxide (FAS-ZnO) as a nano-filler. A superhydrophobic and oleophobic composite coating was successfully prepared through a single step by spraying suspensions containing attapulgite (ATP), FAS-ZnO, and carboxylated polyphenylene sulfide (PPS–COOH) onto desired substrates. In addition, stearic acid was added as a binder and used to enhance the bonding strength between the filler and the substrate. The composite coatings were characterized by FE-SEM, XRD and FT-IR on substrates, and the corrosion resistance of the coatings was evaluated by electrochemical impedance spectroscopy (EIS) and salt spray chamber experiments. The composite coatings showed excellent corrosion resistance due to the synergistic effect of FAS-ZnO and ATP. It was found that the composite coating had good hydrophobic and oleophobic contact angles of 161 ± 1.5° and 159 ± 1°, respectively, which were mainly attributed to the construction of nano-scale structures. It is worth noting that the composite coating performed excellently in chemical stability, self-cleaning performance, UV resistance, anti-fouling function, mechanical strength, and load-bearing floating ability. The coating maintained its highly hydrophobic surface after being stretched through a universal testing machine. Based on the multiple key properties in the composite coating, it can be expected to be applied to large equipment and instrument surfaces in extreme outdoor environments.
Keywords:Superhydrophobic and oleophobic  Self-cleaning  UV resistant  Anti-corrosion  Load-bearing floating ability
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号