首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanical characterization of lightweight engineered geopolymer composites exposed to elevated temperatures
Affiliation:1. Department of Civil Engineering, Gaziantep University, Gaziantep, Turkey;2. Department of Civil Engineering, Kirkuk University, Kirkuk, Iraq
Abstract:In this study, the effect of different factors, such as PVA fibers (2% by total volume) and precursor type (slag, fly ash, or a combination of both), on the behavior of green lightweight engineered geopolymer composites (LEGC) and lightweight engineered cementitious composites (LECC) after exposure to temperatures up to 800 °C for 1 h is investigated. Expanded glass granules were used as lightweight aggregate instead of silica sand to reduce the spalling tendency and density of the composite. The flowability, density, color change, mass loss, spalling resistance, residual mechanical properties (compressive strength, stress-strain diagram, tensile stress-strain diagram, load-deflection response, failure mode), and microstructural analysis (by scanning electron microscopy) were investigated before and after exposure to thermal deterioration. The findings pointed out that the dry density, compressive strength, fiber bridging stress, strain capacity, maximum load, and maximum deflection of the developed mixtures before exposure to fire deterioration were in the range of 1703–1883 kg/m3, 16.66–64.11 MPa, 2.66–4.97 MPa, 2.40–3.33%, 1573–4824 N, and 2.92–5.53 mm respectively. It's worth mentioning that the substitution of 50% slag in the lightweight EGC mixture demonstrated the optimal tensile strain capacity and deformation capacity and further enhanced both ultimate tensile strength and flexural strength of fly ash-based EGC (FA-EGC) mixtures. After heat exposure, both LEGC and LECC composites demonstrated strain hardening behavior and deflection hardening behavior up to 300 °C of heat treatment, while after exposure to a temperature of 300 °C and above, both deflection hardening behavior and strain hardening behavior are dramatically damaged. This is attributable to the melting of the PVA fibers. Also, the microstructural analysis showed that incorporating fly ash into lightweight EGC mixtures can effectively reduce the melting point of PVA fibers and further improve the fire resistance of EGC mixtures.
Keywords:Lightweight engineered geopolymer composites  Lightweight engineered cementitious composites  Elevated temperature  Strain hardening behavior  Deflection hardening behavior
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号