首页 | 本学科首页   官方微博 | 高级检索  
     


Superhydrophobic graphene/ceramic templates for the preparation of particulate drugs
Affiliation:1. Department of Mechanical Engineering, National Taipei University of Technology, Taipei, 106344, Taiwan;2. Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei, 106344, Taiwan
Abstract:This paper proposes the use of superhydrophobic graphene/ceramic templates fabricated through laser texturing and patterning for the preparation of particulate drugs. A nanosecond pulse fiber laser was used to texture a graphene film coated on ceramic substrates for obtaining a superhydrophobic surface. Then, laser patterning was conducted on the laser-textured surface to define the diameter of the prepared particulate drugs. Laser-textured graphene/ceramic substrates with a laser areal fluence of 17.51 J/cm2 and a hatch distance of 0.01 mm exhibited a maximum water contact angle of 151.5°. This result was obtained because the laser-textured graphene films contained coral reef structures with nanoscale pores. Raman analyses indicated that the intensities of the G and 2D bands gradually decreased after the laser texturing and patterning processes. Moreover, the sheet resistance of the laser-textured and laser-patterned graphene films was larger than that of untextured ones because the thickness of the graphene films was reduced through laser thinning. The maximum heating temperature of the graphene-based heater was 140 °C for an input direct current voltage of 36 V. In addition, graphene-based self-heating devices were developed and successfully used to dry liquid roflumilast.
Keywords:Superhydrophobic graphene/ceramic template  Laser texturing and patterning  Graphene-based self-heating device  Liquid roflumilast
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号