首页 | 本学科首页   官方微博 | 高级检索  
     


Enhanced dielectric and mechanical properties of CaCu3Ti4O12/Ti3C2Tx MXene/silicone rubber ternary composites
Affiliation:1. School of Materials Science and Engineering, Nanchang University, Nanchang, 330031, China;2. School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85281, USA
Abstract:Dielectric polymer composites with conducting fillers would have great potential for diverse applications if their severe leakage loss could be addressed. In this regard, ternary composites using both ceramic and conducting materials as fillers might be an enabler for high dielectric constant and low dielectric loss. Herein, ternary composites with both Ti3C2Tx MXene conducting nanosheets and CaCu3Ti4O12 (CCTO) dielectric particles embedded in silicone rubber were studied. It was found that a ternary composite with 1.2 wt% (0.40 vol%) Ti3C2Tx MXene and 12 wt% (2.58 vol%) CCTO could provide an overall superior performance that include a high dielectric constant of 8.8, low dielectric loss of less than 0.0015, good thermal stability up to 450 °C, and excellent mechanical properties with tensile strength of 569 kPa, elastic module of 523 kPa and elongation at break of 333%. The outstanding performance is attributed to the improved uniform dispersion and good interfacial compatibility of mixed fillers in the polymer matrix, suggesting ternary composites might be a better option over their binary counterparts in preparing high performance dielectric composites.
Keywords:Composites  Dielectric properties  Mechanical properties  Interfacial compatibility
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号