首页 | 本学科首页   官方微博 | 高级检索  
     


Luminescence and optical thermometry based on silico-carnotite Ca3Y2Si3O12: Pr3+ phosphor
Affiliation:1. Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi, 417000, China;2. National Electronic Ceramic Product Quality Supervision and Inspection Center, Loudi, Hunan, 417000, China
Abstract:The photoluminescence and temperature sensitivities of Ca3Y2Si3O12:Pr3+ thermo-phosphors with silico-carnotite structure obtained by solid state reaction method were investigated. Pr3+ ions were accommodated in the A sites having coordination number of 9 in AB2C2(SiO4)3 to replace Y3+ ions. The typical sample consisted of microcrystals with an irregular structure and the surface of particles was smooth, which could enhance the luminescence due to reducing the scattering and non-radiation produced by rough surfaces. The band gap value of typical sample was about 4.01 eV. Dipole-dipole interaction could account for concentration quenching. The two thermometry strategies including normalized intensities from 3P03H4 transition and Fluorescence intensity ration (FIR) of 3P03H4/3P13H5 transitions were employed for temperature sensing in 298–573 K. The results revealed that Ca3Y2Si3O12:Pr3+ thermo-phosphors had good temperature sensitivity performance with maximum Sr of 0.59% K?1@573 K and 0.762% K?1@298 K in the above two methods, respectively. Hence, Ca3Y2Si3O12:Pr3+ would be a promising candidate in the field of optical thermometry.
Keywords:Praseodymium  Phosphors  Fluorescence intensity ratio  Optical thermometry
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号