首页 | 本学科首页   官方微博 | 高级检索  
     


Membrane-based hybrid processes for high water recovery and selective inorganic pollutant separation
Authors:Ritchie S M C  Bhattacharyya D
Affiliation:Department of Chemical and Materials Engineering, University of Kentucky, 177 Anderson Hall, Lexington 40506-0046, USA.
Abstract:The removal of heavy metals (e.g. Pb(II), Cd(II), Cu(II), etc.) and oxyanions (e.g. nitrate, As(III, V), Cr(VI), etc.) is of immense interest for treatment of groundwater and other dilute aqueous systems. However, the presence of non-toxic components, such as hardness (Ca, Mg) and sulfate, can interfere with the separation of toxic species. For example, pressure-driven membrane processes, such as reverse osmosis (RO), have been limited for water treatment due to problems that these extraneous components cause with water recovery and ionic strength (osmotic pressure) of the retentate. In addition, nitrate rejection by RO is considerably lower than NaCl rejection, resulting in permeate concentrations that may be too high for groundwater recharging. Other separation systems that rely solely on sorption of toxic species (e.g. ion exchange resins) may not have sufficient selectivity for efficient use in the presence of competing ions. Hence, implementation of pressure-driven membrane separations and high capacity sorbents in hybrid processes shows much promise for remedying these difficulties. For example, selective separation of nitrate may be achieved by combining nanofiltration (NF) for sulfate removal, followed by RO or ion exchange for nitrate removal (see example 1). When small concentrations of toxic metals are present, the large retentate volumes of RO processes may be reduced by selective removal of toxic species with a high capacity sorbent, thus permitting disposal of a lower volume, non-toxic stream (see example 2). The use of microfiltration membrane-based sorbents containing multiple polymeric functional groups is a novel technique to achieve high metal sorption capacity under convective flow conditions. These sorbents are formed by the attachment of various polyamino acids (MW: 2500-10,000), such as polyaspartic acid (cation sorption), polyarginine (oxyanion sorption), and polycysteine (chelation exchange), directly on the membrane pore surfaces. Since these sorbents have also been found to have high selectivity over non-toxic metals, such as calcium, they are ideal candidates for hybrid processing with RO/NF.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号