首页 | 本学科首页   官方微博 | 高级检索  
     


Stable Neural Attractors Formation: Learning Rules and Network Dynamics
Authors:Vico  F J  Jerez  J M
Affiliation:(1) Grupo de Estudios en Biomimética, Universidad de Malaga, E.T.S.Ingenieria Informatica, Campus de Teatinos s/n, 29071 Malaga, Spain
Abstract:Different models of attractor networks have been proposed to form cell assemblies. Among them, networks with a fixed synaptic matrix can be distinguished from those including learning dynamics, since the latter adapt the attractor landscape of the lateral connections according to the statistics of the presented stimuli, yielding a more complex behavior. We propose a new learning rule that builds internal representations of input timuli as attractors of neurons in a recurrent network. The dynamics of activation and synaptic adaptation are analyzed in experiments where representations for different input patterns are formed, focusing on the properties of the model as a memory system. The experimental results are exposed along with a survey of different Hebbian rules proposed in the literature for attractors formation. These rules are compared with the help of a new tool, the learning map, where LTP and LTD, as well as homo- and heterosynaptic competition, can be graphically interpreted.
Keywords:attractor formation  learning rule  memory  neural assemblies  synaptic competition
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号