首页 | 本学科首页   官方微博 | 高级检索  
     

高炉冷却柱的设计优化与数值模拟
引用本文:陈帅,李佳,罗石元,蔡田,张正东,国宏伟.高炉冷却柱的设计优化与数值模拟[J].钢铁,2022,57(7):34-42.
作者姓名:陈帅  李佳  罗石元  蔡田  张正东  国宏伟
作者单位:武汉科技大学冶金装备及其控制教育部重点实验室,湖北武汉430081;武汉科技大学机械传动与制造工程湖北省重点实验室,湖北武汉430081;武汉科技大学精密制造研究院,湖北武汉430081;武汉钢铁股份有限公司,湖北武汉430080;苏州大学沙钢钢铁学院,江苏苏州215021
基金项目:国家自然科学基金资助项目(51774209, 52074185)
摘    要: 在高炉炉役后期冷却壁完全损坏的情况下,一般采用冷却柱对其进行修复,而冷却柱的安装数量和安装位置几乎都是依靠现场技术人员的实践经验来确定。为了解决目前高炉冷却柱在一块炉壳上的安装数量和安装位置存在难以确定的问题,通过分析冷却柱安装数量和安装位置与冷却效果之间的关系,提出了一种充分利用冷却柱冷却性能的优化安装方法。首先以冷却柱的总热交换面积大于原冷却壁的总热交换面积为基本原理,通过计算冷却柱和原冷却壁的热交换面积,得到设定的一块炉壳上冷却柱安装数量为11个;其次以11个冷却柱安装位置的中心坐标为设计变量,利用格点法的基本原理建立计算最大冷却面积的优化数学模型,设置好约束条件后通过遗传算法在MATLAB软件中进行求解,得到了91.68%的冷却柱冷却覆盖面积以及11个冷却柱排列的中心坐标;最后通过11个冷却柱的中心坐标建立三维模型,导入Fluent软件进行模型分析,经过充分迭代得到高炉冷却柱的温度场,并将3种排列的炉壳表面温度场进行对比。数值模拟结果表明,通过本方法得到优化排列的炉壳表面最高温度为73.34 ℃,平均温度为54.29 ℃,相比另外两种排列,最高温度分别降低了14.69%和30.21%,平均温度分别降低了13.33%和17.42%,有效提高了高炉冷却柱的冷却性能和利用效率。

关 键 词:高炉  冷却柱  格点法  遗传算法  数值模拟
收稿时间:2021-12-24

Design optimization and numerical simulation of blast furnace cooling column
CHEN Shuai,LI Jia,LUO Shi-yuan,CAI Tian,ZHANG Zheng-dong,GUO Hong-wei.Design optimization and numerical simulation of blast furnace cooling column[J].Iron & Steel,2022,57(7):34-42.
Authors:CHEN Shuai  LI Jia  LUO Shi-yuan  CAI Tian  ZHANG Zheng-dong  GUO Hong-wei
Abstract:When the cooling stave of blast furnace is completely damaged in the later stage of furnace service, the cooling column is generally used to repair it, but the installation quantity and installation position of cooling column almost depend on the practical experience of on-site technicians. Aiming at the arduous problem that how to determine the quantity and position of blast furnace cooling column installed on a furnace shell, an optimized installation method was put forward through analyzing the relationship between installation quantity and position and cooling effect to make full use of cooling performance of cooling column. Firstly, based on the basic principle that the total heat exchange area of cooling column was greater than the total heat exchange area of original cooling stave, by calculating the heat exchange area of cooling column and original cooling stave, the set number of cooling columns installed on a furnace shell was determined to be 11. Secondly, taking the central coordinates of installation positions for 11 cooling columns as the design variables, the optimization mathematical model for calculating the maximum cooling area was established by basic principle of grid method. After setting the constraints, it was solved in MATLAB software by genetic algorithm, and 91.68% of cooling coverage area of cooling columns and the central coordinates of 11 cooling columns were obtained. Finally, a three-dimensional steady-state heat transfer model was established by central coordinates of installation positions for 11 cooling columns, and the model was analyzed by FLUENT software. After full iteration, the temperature field of blast furnace cooling column was obtained, and the surface temperature fields for three types of arrangement of furnace shells were compared. The results showed that the maximum surface temperature and the average temperature of blast furnace shell with optimized arrangement were 73.34 ℃ and 54.29 ℃, respectively. Compared with the other two arrangements, the maximum temperature was reduced by 14.69% and 30.21% respectively, and the average temperature was reduced by 13.33% and 17.42% respectively, which effectively improved the cooling performance and utilization efficiency of cooling column.
Keywords:blast furnace  cooling column  lattice method  genetic algorithm  numerical simulation  
本文献已被 万方数据 等数据库收录!
点击此处可从《钢铁》浏览原始摘要信息
点击此处可从《钢铁》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号