首页 | 本学科首页   官方微博 | 高级检索  
     


In-situ deformation of an open-cell flexible polyurethane foam characterised by 3D computed microtomography
Authors:J A Elliott  A H Windle  J R Hobdell  G Eeckhaut  R J Oldman  W Ludwig  E Boller  P Cloetens  J Baruchel
Affiliation:(1) Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, UK;(2) Huntsman Corporation, Everslaan 45, B-3078 Everberg, Belgium;(3) The Heath, ICI Technology, Runcorn, Cheshire, WA7 4QD, UK;(4) ESRF, BP 220, F-38043 Grenoble Cedex, France
Abstract:The deformation behaviour of an open-cell flexible polyurethane foam was observed using X-ray microtomography on the ID19 beamline at the ESRF in Grenoble, France. Tomographs, consisting of 1024 voxels cubed, were collected with a voxel size of 6.6 mgrm from a small region near the centre of the foam at a range of compressive strains between 0 and 80%. The results show that the initial stages of compression are taken up by small amounts of elastic bending in struts that are inclined to the compression direction. At 23% strain, entirely collapsed bands were observed in the structure. By 63% strain, there was evidence of struts impinging on each other, corresponding to the densification regime. The compression of an irregular foam (i.e. one with strut length and cell size distributions) appears to involve a sudden change in modulus, accompanied by localised increases in density. Observations of this nature would have been extremely difficult to interpret unambiguously without the ability to carry out sequential microtomographic imaging under realistic in situ loading conditions. The process of finite element analysis (FEA) was begun by constructing node-strut models from the experimental data by a mathematical skeletonisation process. These were used to derive node coordination, strut-length and cell-size distributions. However, direct comparison of the elastic properties with FEA was hampered by the absence of periodicity in the experimentally determined foam structures.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号