首页 | 本学科首页   官方微博 | 高级检索  
     


Development of a multiplex real-time PCR assay for the detection of ruminant DNA
Authors:Ekins Jason  Peters Sharla M  Jones Yolanda L  Swaim Heidi  Ha Tai  La Neve Fabio  Civera Tiziana  Blackstone George  Vickery Michael C L  Marion Bill  Myers Michael J  Yancy Haile F
Affiliation:U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, 8401 Muirkirk Road, Laurel, Maryland 20708, USA.
Abstract:The U.S. Food and Drug Administration (FDA) has previously validated a real-time PCR-based assay that is currently being used by the FDA and several state laboratories as the official screening method. Due to several shortcomings to the assay, a multiplex real-time PCR assay (MRTA) to detect three ruminant species (bovine, caprine, and ovine) was developed using a lyophilized bead design. The assay contained two primer or probe sets: a "ruminant" set to detect bovine-, caprine-, and ovine-derived materials and a second set to serve as an internal PCR control, formatted using a lyophilized bead design. Performance of the assay was evaluated against stringent acceptance criteria developed by the FDA's Center for Veterinary Medicine's Office of Research. The MRTA for the detection of ruminant DNA passed the stringent acceptance criteria for specificity, sensitivity, and selectivity. The assay met sensitivity and reproducibility requirements by detecting 30 of 30 complete feed samples fortified with meals at 0.1 % (wt/wt) rendered material from each of the three ruminant species. The MRTA demonstrated 100 % selectivity (0.0 % false positives) for negative controls throughout the assessment period. The assay showed ruggedness in both sample selection and reagent preparation. Second and third analyst trials confirmed the quality of the written standard operating procedure with consistency of results. An external laboratory participating in a peer-verification trial demonstrated 100 % specificity in identifying bovine meat and bone meal, while exhibiting a 0.03 % rate of false positives. The assay demonstrated equal levels of sensitivity and reproducibility compared with the FDA's current validated real-time PCR assay. The assay detected three prohibited species in less than 1.5 h of total assay time, a significant improvement over the current real-time assay. These results demonstrated this assay's suitability for routine regulatory use both as a primary screening tool and as a confirmatory test.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号