首页 | 本学科首页   官方微博 | 高级检索  
     


Cake-enhanced concentration polarization: a new fouling mechanism for salt-rejecting membranes
Authors:Hoek Eric M V  Elimelech Menachem
Affiliation:Department of Chemical and Environmental Engineering, A249 Bourns Hall, University of California, Riverside, California 92521, USA. hoek@engr.ucr.edu
Abstract:Results from well-controlled colloidal fouling experiments with reverse osmosis (RO) and nanofiltration (NF) membranes suggest the existence of a new source of flux decline for salt-rejecting membranes-cake-enhanced osmotic pressure. The physical mechanisms leading to this enhanced osmotic pressure are a combination of hindered back-diffusion of salt ions and altered cross-flow hydrodynamics within colloidal deposit layers, which lead to an enhanced salt concentration polarization layer. A model that accounts for both hindered diffusion of salt ions and altered hydrodynamics within colloidal deposit ("cake") layers is presented. The model successfully links permeate flux and salt rejection to cake-enhanced concentration polarization and provides new insight into the mechanisms through which salt-rejecting membranes foul. Experimental data support the model calculations and highlight the role of enhanced concentration polarization phenomena in the performance (i.e., water flux and salt rejection) of polymeric thin-film composite RO/NF membranes in environmental applications.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号