PSIM-based modeling of automotive power systems: conventional, electric, and hybrid electric vehicles |
| |
Authors: | Onoda S. Emadi A. |
| |
Affiliation: | Soleq Corp., Chicago, IL, USA; |
| |
Abstract: | Automotive manufacturers have been taking advantage of simulation tools for modeling and analyzing various types of vehicles, such as conventional, electric, and hybrid electric vehicles. These simulation tools are of great assistance to engineers and researchers to reduce product-development cycle time, improve the quality of the design, and simplify the analysis without costly and time-consuming experiments. In this paper, a modeling tool that has been developed to study automotive systems using the power electronics simulator (PSIM) software is presented. PSIM was originally made for simulating power electronic converters and motor drives. This user-friendly simulation package is able to simulate electric/electronic circuits; however, it has no capability for simulating the entire system of an automobile. This paper discusses the PSIM validity as an automotive simulation tool by creating module boxes for not only the electrical systems, but also the mechanical, energy-storage, and thermal systems of the vehicles. These modules include internal combustion engines, fuel converters, transmissions, torque couplers, and batteries. Once these modules are made and stored in the library, the user can make the car model either a conventional, an electric, or a hybrid vehicle at will, just by dragging and dropping onto a schematic blank page. |
| |
Keywords: | |
|
|