首页 | 本学科首页   官方微博 | 高级检索  
     


Stress-induced anisotropy in sand under cyclic loading
Authors:Minyun Hu  Catherine O’Sullivan  Richard R Jardine  Mingjing Jiang
Affiliation:(1) Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai, 200092, People’s Republic of China;(2) Department of Geotechnical Engineering, Tongji University, Shanghai, 200092, People’s Republic of China
Abstract:The anisotropy of a granular material’s structure will influence its response to applied loads and deformations. Anisotropy can be either inherent (e.g. due to depositional process) or induced as a consequence of the applied stresses or strains. Discrete element simulations allow the interactions between individual particles to be explicitly simulated and the fabric can be quantified using a fabric tensor. The eigenvalues of this fabric tensor then give a measure of the anisotropy of the fabric. The coordination number is a particle scale scalar measure of the packing density of the material. The current study examines the evolution of the fabric of a granular material subject to cyclic loading, using two-dimensional discrete element method (DEM) simulations. Isotropic consolidation modifies and reduces the inherent anisotropy, but anisotropic consolidation can accentuate anisotropy. The ratio of the normal to shear spring stiffness at the particle contacts in the DEM model affects the evolution of anisotropy. Higher ratios reduce the degree of anisotropy induced by anisotropic consolidation. The anisotropy induced by cyclic loading depends on the amplitude of the loading cycles and the initial anisotropy.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号