首页 | 本学科首页   官方微博 | 高级检索  
     

基于最简视觉显著性的红外目标快速提取方法
引用本文:王军,何子清,柳红岩,王喜军. 基于最简视觉显著性的红外目标快速提取方法[J]. 激光与红外, 2016, 46(7): 880-884
作者姓名:王军  何子清  柳红岩  王喜军
作者单位:苏州科技学院电子与信息工程学院,江苏 苏州 215000;中国科学院长春光学精密机械与物理研究所,吉林 长春 130033;中国白城兵器试验中心,吉林 白城 137000
基金项目:国家自然科学基金项目(No.11043001)资助
摘    要:在红外深空目标跟踪系统中,为了能够从深空红外图像中快速提取微小目标,通过分析红外深空图像的特点,提出一种基于最简视觉显著性的红外目标快速提取方法。该方法在传统的视觉显著性的基础上,通过计算局部灰度最大值和目标像素的灰度平均值与邻域像素的灰度加权值的对比度组成特征向量,构造显著性模型,抑制背景并凸显目标,使之不但能够减少运算耗时,而且能够保证提取精度。通过对红外深空图像进行处理,实验结果表明该算法的运算时间仅为传统的视觉显著性算法的28%,且有较好的处理结果,证明了该算法的有效性。

关 键 词:红外深空图像;视觉显著性;红外目标提取

Rapid infrared target extraction based on simplest visual saliency
WANG Jun,HE Zi-qing,LIU Hong-yan,WANG Xi-jun. Rapid infrared target extraction based on simplest visual saliency[J]. Laser & Infrared, 2016, 46(7): 880-884
Authors:WANG Jun  HE Zi-qing  LIU Hong-yan  WANG Xi-jun
Affiliation:Science and Technology University of Suzhou,Electronic and Information Engineering Faculty,Suzhou 215000,China; Chinese Academy of Science,Changchun Institute of Optics,Fine Mechanics and Physics,Changchun 130033,China;Center of arms experiment of Baicheng,Baicheng 137000,China
Abstract:In the system of infrared deep space target tracking,by analyzing the feature of the infrared images,a rapid infrared target extraction method based on simplest visual saliency is proposed to achieve fast infrared targets extraction.Compared with traditional visual saliency,this method mainly constructs saliency model through computing eigenvector constituted by regional maximum gray value and contrast between mean grey value of target and weight value of every pixels in neighborhood,which can restrain background and highlight targets.After processing the infrared deep space images,the experimental results show that the runtime of this method is only 28% of that of the traditional visual saliency,which proves the validity of this method.
Keywords:infrared high space image  visual saliency  infrared targets extraction
点击此处可从《激光与红外》浏览原始摘要信息
点击此处可从《激光与红外》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号