首页 | 本学科首页   官方微博 | 高级检索  
     

不确定时变系统的鲁棒学习控制算法
引用本文:刘利,孙明轩. 不确定时变系统的鲁棒学习控制算法[J]. 控制理论与应用, 2010, 27(3): 323-328
作者姓名:刘利  孙明轩
作者单位:浙江工业大学信息工程学院,浙江杭州,310023;浙江工业大学信息工程学院,浙江杭州,310023
基金项目:国家自然科学基金资助项目(60474005, 60774021, 60874041); 浙江省自然科学基金资助项目(Y107494).
摘    要:研究不确定性时变系统在有限时间区间上重复作业和在无限时间区间上周期作业的跟踪控制问题. 基于Lyapunov-like方法, 给出了形式简单的鲁棒迭代学习控制和鲁棒重复控制两种算法. 两种学习算法均可弥补单一控制算法的缺陷, 鲁棒控制部分被用来保证闭环系统中所有变量的有界性, 学习控制部分可有效消除系统跟踪误差, 改善系统的跟踪性能. 仿真结果验证了两种学习算法的有效性.

关 键 词:迭代学习控制  重复控制  鲁棒控制  收敛性
收稿时间:2008-08-27
修稿时间:2009-05-04

Robust learning control algorithms for uncertain time-varying systems
LIU Li and SUN Ming-xuan. Robust learning control algorithms for uncertain time-varying systems[J]. Control Theory & Applications, 2010, 27(3): 323-328
Authors:LIU Li and SUN Ming-xuan
Affiliation:College of Information Engineering, Zhejiang University of Technology,College of Information Engineering, Zhejiang University of Technology
Abstract:The trajectory tracking problem of uncertain time-varying systems is addressed, where the same tasks are performed repeatedly within a finite duration of time, or periodic references are followed over an infinite interval. Through the Lyapunov-like synthesis, two robust learning control algorithms are developed based on the control tasks, and their stability and convergence results are established. Both algorithms can compensate for the shortcoming when either one is applied separately. The robust control component guarantees all the variables in the closed-loop to be bounded, while the learning control component ensures that the tracking error converges to zero. Numerical results are presented to demonstrate effectiveness of the proposed learning algorithms.
Keywords:iterative learning control   repetitive control   robust control   convergence
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《控制理论与应用》浏览原始摘要信息
点击此处可从《控制理论与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号