首页 | 本学科首页   官方微博 | 高级检索  
     


Radial Gas Mixing in a Fluidized Bed with a Multi‐Horizontal Nozzle Distributor using Response Surface Methodology
Authors:C‐S Chyang  F‐P Qian  H‐Y Chiou
Affiliation:1. Department of Chemical Engineering, Chung Yuan Christian University, Taiwan, Rep. of China;2. School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, P. R. China
Abstract:The gas mixing in the radial direction within a fluidized bed equipped with a multi‐horizontal nozzle distributor was studied using response surface methodology (RSM), which enables the examination of parameters with a moderate number of experiments. All experiments were carried out in a circular fluidized bed of 0.29 m I.D. cold model fluidized bed. The distributor is placed beside twenty‐two horizontal nozzles that are arranged in three concentric circles with all existing discharge directed clockwise. The tracer gas (CO2) was discharged into the bed as a tracer gas and the analysis was performed with a gas chromatograph. In order to compare the different internal circulations, the tracer gas was discharged in the center area or annular area of the bed. In RSM, the static bed height, superficial velocity and the open area ratio of the distributor are chosen as the research variables, and the standard deviation of the time averaged radial tracer concentration is used as the objection function. A mathematical model for the gas mixing as a function of the operating parameters was empirically proposed. The results show that the standard deviation of time averaged radial tracer concentration is well correlated with the operating and geometry parameters, (UUmf)/Umf, Hs/D and ψd, and that the tracer gas injected to the center position has a better dispersion than when injected to the annular position. This model can be used for optimizing the design of fluidized bed reactors at a required performance level.
Keywords:Fluidized beds  Gas mixing  Nozzle distributor  Response surface methodology
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号