首页 | 本学科首页   官方微博 | 高级检索  
     


Curing behavior and thermal properties of multifunctional epoxy resin with methylhexahydrophthalic anhydride
Authors:Yanfang Liu  Zhongjie Du  Chen Zhang  Congju Li  Hangquan Li
Affiliation:1. The Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials,Beijing University of Chemical Technology, Beijing 100029, China;2. College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China;3. Beijing Key Laboratory of Clothing Material R&D and Assessment, Beijing Institute of Clothing Technology,Beijing 100029, China
Abstract:The curing behavior and thermal properties of bisphenol A type novolac epoxy resin (bisANER) with methylhexahydrophthalic anhydride (MHHPA) at an anhydride/epoxy group ratio of 0.85 was studied with Fourier‐transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and thermogravimetry. The results showed that the FTIR absorption intensity of anhydride and epoxide decreased during the curing reaction, and the absorption peak of ester appeared. The dynamic curing energies were determined as 48.5 and 54.1 kJ/mol with Kissinger and Flynn–Wall–Ozawa methods, respectively. DSC measurements showed that as higher is the curing temperature, higher is the glass transition. The thermal degradation of the cured bisANER/MHHPA network was identified as two steps: the breaking or detaching of ? OH, ? CH2? , ? CH3, OC? O and C? O? C, etc., taking place between 300 and 450°C; and the carbonizing or oxidating of aromatic rings occurring above 450°C. The kinetics of the degradation reaction was studied with Coats–Redfern method showing a first‐order process. In addition, vinyl cyclohexene dioxide (VCD) was employed as a reactive diluent for bisANER (VCD/bisANER = 1 : 2 w/w) and cured with MHHPA, and the obtained network had a higher Tg and a slight lower degradation temperature than the undiluted system. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2041–2048, 2007
Keywords:composites  curing of polymers  degradation  glass transition  kinetics (polymer)  matrix  resins
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号