首页 | 本学科首页   官方微博 | 高级检索  
     

基于云计算和智能优化SVR的光伏发电功率预测
摘    要:
为提高光伏发电功率的预测精度,针对支持向量机回归(Support Vector Regression,SVR)模型的预测结果易受其惩罚系数C、敏感损失函数的最大误差系数ε和核函数g影响的问题,提出一种基于新型智能算法-蝗虫算法优化SVR模型参数的光伏发电功率预测模型。由于光伏发电功率数据存在随机性和间隙性的特征,Multi-Agent和分布式思想被引入蝗虫算法优化SVR模型,通过将云计算的MapReduce框架和GOA-SVR结合,提出一种基于MapReduce和GOA-SVR并行化的光伏发电功率预测模型(MapReduce and GOA-SVR,MR-GOA-SVR),从而提高海量高维光伏发电数据的处理能力。将影响光伏输出功率的11个气象因素作为GOA-SVR的输入向量,光伏输出功率作为GOA-SVR的输出向量,建立GOA-SVR的光伏发电功率预测模型。研究结果表明:MR-GOA-SVR可以有效提高不同天气类型下的光伏发电功率的预测精度,具有很强的现实性和指导意义。与PSO-SVR、GA-SVR、GOA-SVR和SVR相比,MR-GOA-SVR在晴天、阴天和雨天均可以提高预测精度,且具有优异的并行性能。

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号