首页 | 本学科首页   官方微博 | 高级检索  
     


An experimental study of optical glass machining
Authors:F. Z. Fang  G. X. Zhang
Affiliation:(1) State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 300072 Tianjin, China;(2) Present address: Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075
Abstract:Owing to brittleness and hardness, optical glass is one of the materials that is most difficult to cut. Nevertheless, as the threshold value of the undeformed chip thickness is reached, brittle materials undergo a transition from the brittle to the ductile machining region. Below this threshold, it is believed that the energy required to propagate cracks is larger than the energy required for plastic deformation. Thus, plastic deformation is the predominant mechanism of material removal in machining these materials in this mode. An experimental study is conducted to diamond-cut BK7 glass in ductile mode. As an effective rake angle plays a more important role than a nominal rake angle does, a discussion about this effective angle is carried out in the paper. The investigation presents the feasibility of achieving nanometric surfaces. Power spectral density (PSD) analysis on the machined surfaces shows the difference between the characteristics of the two modes. During the experiments, it is recognised that tool wear is a severe problem. Further study is in process to improve the cutting tool life.
Keywords:Cutting  Glass  Surface finish
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号