首页 | 本学科首页   官方微博 | 高级检索  
     


Probability density functions for multilook polarimetric signatures
Authors:Joughin  IR Winebrenner  DP Percival  DB
Affiliation:Appl. Phys. Lab., Washington Univ., Seattle, WA ;
Abstract:Derives closed-form expressions for the probability density functions (PDF's) for copolar and cross-polar ratios and for the copolar phase difference for multilook polarimetric SAR data, in terms of elements of the covariance matrix for the backscattering process. The authors begin with the case in which scattering-matrix data are jointly Gaussian-distributed. The resulting copolar-phase PDF is formally identical to the phase PDF arising in the study of SAR interferometry, so the authors' results also apply in that setting. By direct simulation, they verify the closed-form PDF's. They show that estimation of signatures from averaged covariance matrices results in smaller biases and variances than averaging single-look signature estimates. They then generalize their derivation to certain cases in which backscattered intensities and amplitudes are K-distributed. They find in a range of circumstances that the PDF's of polarimetric signatures are unchanged from those derived in the Gaussian case. They verify this by direct simulation, and also examine a case that fails to satisfy an important assumption in their derivation. The forms of the signature distributions continue to describe data well in the latter case, but parameters in distributions fitted to (simulated) data differ from those used to generate the data. Finally, the authors examine samples of K-distributed polarimetric SAR data from Arctic sea ice and find that their theoretical distributions describe the data well with a plausible choice of parameters. This allows the authors to estimate the precision of polarimetric-signature estimates as a function of the number of SAR looks and other system parameters
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号