首页 | 本学科首页   官方微博 | 高级检索  
     


Electric manipulation of bioparticles and macromolecules on microfabricated electrodes
Authors:Huang Y  Ewalt K L  Tirado M  Haigis R  Forster A  Ackley D  Heller M J  O'Connell J P  Krihak M
Affiliation:Nanogen Inc., San Diego, California 92121, USA. yhuang@nanogen.com
Abstract:Bioparticle separation, bioparticle enrichment, and electric field-mediated immune detection were carried out on microfabricated semiconductor chips utilizing ac and dc electric fields. Microscale separation on a chip surface having an active area of approximately 16 mm2 was demonstrated for a mixture of Bacillus globigii spores and Escherichia coli bacteria. Dielectrophoretic enrichment was performed by collecting target bioparticles from a flow stream in flow cells of 47.5 microL, achieving a 20-fold increase in the concentration of E. coli bacteria from a diluted sample, a 28-fold enrichment for peripheral blood mononuclear cells from red blood cells, and a 30-fold increase in white blood cells from diluted whole blood. The ability to manipulate and collect bioparticles and macromolecules at microfabricated electrodes with ac and dc fields was further illustrated in electric field-mediated immunoassays for analyzing the biological identities of E. coli bacteria and B. globigii spores. According to these results, the electric methods for manipulating bioparticles present themselves as viable techniques for novel biomedical applications in sample preparations and biochemical assays on microelectrode arrays.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号