首页 | 本学科首页   官方微博 | 高级检索  
     

基于磁记忆检测的服役铁磁零件剩余寿命预测
作者姓名:黄海鸿  孙霄  汪燕  姜石林
作者单位:合肥工业大学机械与汽车工程学院;
基金项目:国家自然科学基金资助项目(50905052);博士点新教师基金资助项目(2009011120007)
摘    要:服役零件疲劳寿命的预测与评估是装备高质量运行的前提。为准确预测服役零件的剩余寿命,基于磁记忆检测方法探索影响零件剩余寿命的参数,建立剩余寿命预测的新方法。以汽车车桥桥壳为对象,通过ABAQUS对服役零件进行疲劳寿命模拟分析,识别零件的疲劳危险区域;借助金属磁记忆检测技术和断裂力学理论,提取零件疲劳危险区中表征疲劳损伤程度的裂纹长度、应力强度因子、磁记忆信号法向分量梯度最大值、应力集中度等作为参数;引入支持向量机(SVM)理论,建立零件的剩余寿命预测模型。结果表明:SVM模型具有较高的预测精度,预测值与疲劳试验实测剩余寿命值相比误差不超过10%;预测精度同时受到零件损伤程度、训练样本数量、载荷大小和输入特征参数等的影响;建立的方法能够有效应用于低载荷高周疲劳下的桥壳等服役零件的剩余寿命预测。

关 键 词:支持向量机  服役零件  剩余寿命  磁记忆检测  
本文献已被 CNKI 等数据库收录!
点击此处可从《机械设计与研究》浏览原始摘要信息
点击此处可从《机械设计与研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号