首页 | 本学科首页   官方微博 | 高级检索  
     

基于增量子空间自适应决策的目标跟踪
引用本文:仝小敏, 张艳宁, 杨涛. 基于增量子空间自适应决策的目标跟踪. 自动化学报, 2011, 37(12): 1483-1494. doi: 10.3724/SP.J.1004.2011.01483
作者姓名:仝小敏  张艳宁  杨涛
作者单位:1.西北工业大学计算机学院陕西省语音与图像信息处理重点实验室 西安 710129
基金项目:国家自然科学基金(60903126,60872145); 中国博士后特别基金(201003685); 中国博士后基金(20090451397); 西北工业大学基础研究基金(JC201120)资助~~
摘    要:基于增量子空间的目标跟踪算法多数不加选择地将检测到的目标作为模板训练的样本, 并以固定频率更新模板, 这种无反馈闭环机制使得算法在目标外观模型发生变化、 光照变化等复杂条件下难以鲁棒跟踪目标, 一旦跟踪失败很难从错误中恢复. 为此, 我们提出一种反馈闭环跟踪算法, 在增量子空间粒子滤波跟踪框架下, 引入跟踪状态判决作为后续模板更新依据. 通过判决反馈信息选择合适的样本适时更新模板, 有效克服目标外观模型的变化, 持续跟踪目标. 实验结果表明, 由于引入跟踪状态判决, 在目标外观变化、光照变化等情况下, 本算法能够以与环境相适应的频率及时更新模板, 提高跟踪精度, 实验结果验证了本文算法的鲁棒性和有效性.

关 键 词:自适应更新   跟踪状态判决   子空间增量学习   目标跟踪
收稿时间:2011-01-17
修稿时间:2011-07-07

Robust Object Tracking Based on Adaptive and Incremental Subspace Learning
TONG Xiao-Min, ZHANG Yan-Ning, YANG Tao. Robust Object Tracking Based on Adaptive and Incremental Subspace Learning. ACTA AUTOMATICA SINICA, 2011, 37(12): 1483-1494. doi: 10.3724/SP.J.1004.2011.01483
Authors:TONG Xiao-Min  ZHANG Yan-Ning  YANG Tao
Affiliation:1. Shaanxi Key Laboratory of Speech and Image Information Processing, School of Computer Science, Northwestern Polytechnical University, Xi'an 710129
Abstract:The traditional target tracking algorithm usually trains the template with detected samples and updates the template at a fixed frequency. This close-loop mechanism lacks feedback and often makes it impossible to track targets robustly when target appearance or illumination changes. Besides, it can not recover from tracking failure easily. Therefore, we propose a feedback-loop tracking framework by bringing in the tracking state judgement. In this framework, the tracking state judgement works as the basis of the following template updating. According to the tracking state judgement, we can choose suitable samples to update the template at appropriate time so as to track targets continuously. Experimental results show that our method can get the current template immediately and correctly due to the tracking state judgement and decision mechanism. We can upate the template at an adaptive frequency and meanwhile track targets correctly even in the case of target appearance or illumination changing.
Keywords:Adaptive updating  tracking state judgement  subspace incremental learning  object tracking
本文献已被 CNKI 等数据库收录!
点击此处可从《自动化学报》浏览原始摘要信息
点击此处可从《自动化学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号