首页 | 本学科首页   官方微博 | 高级检索  
     


Processing of Al2O3/SiC ceramic cake preforms and their liquid Al metal infiltration
Affiliation:1. School of Materials Science and Technology, National Laboratory of Mineral Materials, China University of Geosciences (Beijing), Beijing 100083, PR China;2. Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
Abstract:In order to prepare ceramic preforms, chemical processes were used rather than using mixing of ceramic powders to obtain porous Al2O3/SiC ceramic foams. A slurry was prepared by mixing aluminium sulphate and ammonium sulphate in the water, and silicon carbide powder was added into the slurry so that a uniform mixture of Al2O3/SiC cake could be produced. The resulting product was (NH4)2SO4·Al2(SO4)3·24H2O plus silicon carbide particles (SiCp) after dissolving chemicals in the water. This product was heated up in a ceramic crucible in the furnace. With the effect of heat it foamed and Al2O3/SiC cake was obtained. Resulting Al2O3 grains were arranged in a 3D honeycomb structure and the SiC particles were surrounded by the alumina grains. Consequently, homogeneous powder mixing and porosity distribution were obtained within the cake. The morphology of the powder connections was networking with flake like particles. These alumina particles resulted in large amounts of porosity which was desired for ceramic preforms to allow liquid metal flow during infiltration. The resulting high porous ceramic cake (preform) was placed in a sealed die and liquid aluminium was infiltrated by Ar pressure. The infiltration was achieved successfully and microstructures of the composites were examined.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号